Vibrations and Aeroelasticity

Code	Credit Hours
AE-337	3-0

Course Description

The goal of this course is to enable students to determine the effects of vibrations on the performance and safety of the system with fundamental application of vibration theory, and to provide adequate background for more advanced studies required for the wider applications of the subject in various fields of engineering. In first part the equation of motion of a 1-DOF system are derived and applied for solving problems. Later the responses of un- damped and viscously damped systems subjected to harmonic forces are studies followed by responses of multi-DOF systems to various types of loading. Introduction to basic topics of aeroelasticity. The last part of the course covers "Introduction to Aero-elasticity".

Textbook (s):

- 1. Singiresu, S. Rao. Mechanical vibrations. Boston, MA: Addison Wesley, Latest Available Edition, PrenticeHall
- 2. Physics by Aviation Maintenance Technician Certification Series, Latest Available Edition

Reference Book (s):

- 1. Hodges, Dewey H., and G. Alvin Pierce. Introduction to structural dynamics and aeroelasticity. Vol. 15. cambridge university press, 2011.
- 2. Kelly, S. Graham. Mechanical vibrations: theory and applications. Cengage learning,2012.

Prerequisites

- Engineering Dynamics
- Linear Algebra and ODE

ASSESSMENT SYSTEM:

Quizzes	10%
Assignments	10%
Mid Terms	30%
ESE	50%

Teaching Plan

Lec No	Description	Ref
1-4	Fundamentals of Vibration Historical background, importance andbasic concepts of vibration. Classification of vibration and analysis	Text 1 Chp 1
	procedure. Spring elements, spring constants of elastic elements, combination of springs.	1.1-1.7
5-8	Mass or inertial element Damping elements Simple Harmonic Motion	Text 1 Chp 1 1.8-1.10
9-15	Free vibration of undamped. Translation system. Free vibration of Undamped Torsional system. Response of 1 st order systems and Rayleigh's Energy Method Free Vibration with viscous damping.	Text 1 Chp 2 2.2-2.6
16-18	Examples using MATLAB	2.12
19	MID TERM EXAM	
20-22	Free Vibration with Coulomb damping. Stability Analysis	Text 1 Chp 2 2.9, 2.11
23-27	Introduction Response of Undamped system under Harmonic Force. Response of Damped system under	Text 1 Chp 3
28-33	Harmonic Force. Response of Damped system under Harmonic Motion of the base. Response of Damped system under Rotating Unbalance.	3.1-3.7
	Examples using MATLAB	3.15
34-36	Introduction to Transient Vibration forSDOF Systems (Introduction only)	Ref 2 Chp 5 51, 5.2

		Text 1
		Chp 4
37-39	Response under general periodic force(Introduction	4.2
	only)	Ref 2
		Chp 5
		5.6-5.7
	Introduction and EOM to 2-DoF Vibration	
	Systems	
	Free Vibration of Undamped System.	Text 1
40-44	. ,	Chp 5
	Coordinate Coupling and Principal	5.1-5.6
	Coordinate.	
	Forced Vibration Analysis procedure.	
	Semi-Definite Systems, Transfer Function Approach and	Text 1
	Solutions using Laplace	Chp 5
	Transform, Modal Analysis	5.7, 5.9-5.10
		Text 1
44-45	Vibration Isolation	Chp 9
		9.10
	Introduction to Aero-elasticity & Loaddistribution and	Text 1
46	Divergence	Chp 8
		8.1-8.2
<u> </u>	Control effectiveness and reversal	Ref 1
		Chp 3 & 4
47	Flutter and Flutter prevention	3.3, 4.1, 4.2,
		4.3